索尼锂电池采用锡类负极材料使容量增加25%

技术在线 综合报道
A+

  近日,索尼宣布将采用锡(Sn)类负极材料来提高锂离子充电电池的容量。此次开发的是”18650”尺寸(直径18mm×高65mm)的电池单元,容量高达3.5Ah。与该公司2010年投产的2.8Ah原产品相比,容量大幅增加了25%(图1)。体积能量密度为723Wh/L。重量为53.5g,重量能量密度为226Wh/kg。充电电压为4.3V。预定2011年内开始供货。

  索尼开发出了通过采用Sn类负极材料使单元容量比原来提高25%的锂离子充电电池”Nexelion”(a)。此前一直通过采用石墨负极材料来增加容量,但最近以来容量增加率放缓。Sn具有远远大于普通负极材料石墨的理论容量(b)。(图(a)由《日经电子》根据索尼的资料绘制)

  其实,此次并不是索尼首次使负极采用Sn的锂离子充电电池实现产品化。该公司已从2005年开始面向摄像机销售直径14mm×高43mm的”14430”尺寸电池单元。此次将面向笔记本电脑量产比14430大一圈的18650尺寸产品。

  实现Sn类材料的非晶化

  要使18650尺寸电池单元实现3.5Ah的高容量,”只能改变负极材料”(索尼Energy Device LI第1事业部门商品设计1部统括部长井上弘)。索尼曾于1997年前后通过将负极材料由原来的低结晶性碳(硬碳)改为石墨提高了容量。

  之后则主要通过改进正极材料,将容量提高到了当初的约2.5倍,但最近以来的容量增加率却在不断降低。于是,索尼时隔约14年再次决定更改18650单元的负极材料,采用了Sn类材料。

  Sn和硅(Si)与目前的主流负极材料石墨相比,具有近10倍的理论容量。但充放电时负极的膨张和收缩会破坏晶体构造,因此充放电周期寿命较短。此次索尼通过Sn类材料的非晶化解决了这一问题(图2)。该公司通过在纳米级别上使Sn、钴(Co)及碳等多种元素实现非晶化,抑制了充放电时粒子的形状变化,从而提高了电池单元的充放电周期寿命。

  高容量也可确保安全性

  此次开发的锂离子充电电池还改进了正极与隔膜。将正极材料由可兼顾容量与安全性的三元类(Li(Ni-Co-Mn)O2)材料改成了钴酸锂(LiCoO2)。LiCoO2的Co材料价格较高,而且热稳定性处于劣势,所以正极材料一直在向三元类转变,但索尼却逆潮流而上,采用了容量更高的LiCoO2。

  LiCoO2会在出现内部短路等异常时温度升高,这种情况下会产生氧,氧与有机电解液发生反应后可能会燃烧。因此,索尼在LiCoO2粒子表面”进行了0.1~1μm厚覆膜处理”(井上)。据该公司介绍,这种方法可降低氧与有机电解液的反应。

  隔膜方面,为了防止发生内部短路,在聚烯烃微多孔膜的两面形成了数μm厚的金属氧化物陶瓷层(图3)。陶瓷层具备三维构造,直径不到1μm的金属氧化物粒子与作为粘合剂的树脂呈网眼状连接在一起。发生异常时,柔软性与粘合性较高的树脂网可使绝缘物即金属氧化物附着在异物周围,从而限制电流通过。

  当然,新型单元也还存在课题。比如,反复充放电300次以后,容量会降至最初的约80%。反复充放电500次以后容量会降至约60%,只勉强达到了可供笔记本电脑使用的最低标准。今后要想扩大销售,必须提高电池单元的充放电周期。

  ( 编辑/刘文林 )

来源:技术在线

返回第一电动网首页 >

#索尼##锂电池##负极材料#
0
进入技术栏目阅读更多精彩内容
相关阅读
金属锂负极强势崛起,硅负极是否已经做好准备?
金属锂负极强势崛起,硅负极是否已经做好准备?
是否能满足超高比能量要求?关于金属锂负极的机遇与挑战
是否能满足超高比能量要求?关于金属锂负极的机遇与挑战
硅烯,下一代硅负极材料?
硅烯,下一代硅负极材料?
解析锂离子电池正负极材料的现在和未来——负极篇
解析锂离子电池正负极材料的现在和未来——负极篇
新突破——低膨胀层状无定形Si负极材料
新突破——低膨胀层状无定形Si负极材料
鲍海友:深圳斯诺持续推动负极材料技术创新
鲍海友:深圳斯诺持续推动负极材料技术创新
发表评论
说点什么吧...
0