东京工大和丰田全固体电池实用进程加速
全固体电池因以固体电解质代替传统的有机电解液,有望提高安全性和延长使用寿命,所以作为新一代电池的有力候选而备受关注。最近,又发现了一种可以进一步提高性能的固体电解质。
这就是硫化物类固体电解质的一种————Li10GeP2S12。表示锂扩散速度的离子传导率极高,常温(27℃)下可达1.2×10-2S/cm。是由东京工业大学、丰田汽车和高能加速器研究机构的研究团队开发的。用主导研发的东京工业大学研究生院综合理工学研究科物质电子化学专业教授菅野了次的话说,就是”打破了此前固体电解质无法实现的常温10-2S/cm的障碍”。
刷新保持了30年之久的记录
作为全固体电池实用进程中的重要课题,一直存在着固体电解质离子传导率低的问题。其证据之一就是,迄今为止公认最高的Li3N(常温下离子传导率为6×10-3S/cm)在1970年代被发现以来,历经30多年固体电解质离子传导率也没能提高一个数量级。
此次发现的材料常温下达到了1.2×10-2S/cm,实现了与现有主流有机电解液同等的离子传导率(图1)。而且低温下显示了优于有机电解液的离子传导率。
东京工业大学及丰田汽车等开发的固体电解质在常温下的传导率达到了极高的1.2×10-2S/cm。具有超过现在使用的有机电解液和高分子电解质等传统锂离子传导体的特性。(图根据东京工业大学资料制作)
并且,因全固体电池的固体电解质中只有锂离子移动而承担全部电流,所以迁移数为1。而在电解液中,不仅是阳离子————锂离子,而且阴离子也移动,所以迁移数低。因有这一特点,此次开发的固体电解质被认为显示出了优于有机电解液的卓越性能。
此次的成果是通过”对可能具有高离子传导率的硫化物类物质进行反复探索”(菅野)而发现的。”找到候选材料后,在单相化合成工艺上花费了约1年的功夫”。(菅野)
探明了结构和锂的分布
除提高离子传导率之外,此次研究的另一重大成果是对Li10GeP2S12结构的分析。由大强度质子加速器设施”J-PARC”中的超高分辨粉末中子衍射设备”SuperHRPD(BL08)”的中子衍射测定,最终探明了晶体结构。
分析结果发现,Li10GeP2S12具有不同于此前固体电解质的结构(图2)。具体而言,Li10GeP2S12为3维骨架结构物质,在其骨架结构内部,由于锂呈链条结构存在,所以实现了较高的锂传导性。同时还发现构成材料中锂所占比例很高,从而证实了离子传导率提高的原因。
寻找和此次新材料具有相同结构的材料,就有望合成离子传导率更高的材料。
研究团队在材料探索的同时,也加强了实用化方面的努力。丰田汽车已经试制了使用Li10GeP2S12的全固体电池(图3)。正、负极材料分别使用钴酸锂(LiCoO2)和铟(In)并测定了充放电特性。
其结果,获得了非常稳定的充放电曲线。具体而言,电流密度在14mA/g时,显示了超过120mAh/g的放电容量。第二周期以后,显示出约100%的充放电效率,并确认之后直至第八周期均可稳定充放电。
据称,今后将逐一解决固体电解质长期稳定性和正负极的最佳组合等实用化课题。
( 编辑/刘文林 )